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The significance of drop-fluid viscosity on the effective rheological properties and on
the dynamics of the microstructure of mono-disperse suspensions of two-dimensional
liquid drops with constant interfacial tension is investigated by means of numerical
simulations at vanishing Reynolds number, using the boundary integral method for
Stokes flow. Three important features of the numerical method are the computation of
the doubly-periodic Green’s function and associated stress tensor by tabulation and
interpolation, the iterative solution of a deflated integral equation for the interfacial
velocity, and the repositioning of the drop interfaces at close proximity to avoid
artificial coalescence. In the first part of the simulations, the interaction of two
intercepting drops in simple shear flow is studied in an extended range of conditions,
and the results are used to quantify the behaviour and develop insights into the physics
of dilute systems. In the second part of the simulations, the motion of a random
suspension of 25 drops repeated periodically in the two spatial directions is studied at
the areal fraction φ¯ 0±30, drop fluid to ambient fluid viscosity ratio λ¯ 1 or 10, and
drop capillary number Ca¯ 0±10 or 0±30, a total of four combinations. It is found that
the rheological properties of the suspension and the average drop deformation and
orientation depend on the values of λ and Ca in a subtle fashion. As the viscosity of
the drops is raised, the drop-centre pair distribution function undergoes a transition
from a liquid-like to a rigid-particle-like behaviour, and particle aggregation and
cluster formation become more important. For λ¯ 10, the results are in excellent
qualitative, and in some cases quantitative, agreement with those presented in previous
studies for mono-layered suspensions of rigid spheres. The drop self-diffusivity is
computed and its dependence on λ and Ca is discussed, although the results carry some
uncertainty owing to the moderate number of drops within each periodic cell.

1. Introduction

In a recent article (Li, Charles & Pozrikidis 1996), we presented results of dynamical
simulations of the flow of two-dimensional, mono-disperse, random suspensions of
deformable liquid drops in simple shear flow. In the parametric studies, the motion of
a doubly-periodic suspension containing 25 or 49 drops per periodic cell was simulated
using the boundary integral method for Stokes flow. Because of high computational
cost, the viscosity of the drop was restricted to that of the ambient fluid. The
investigations illustrated the effects of the areal fraction of the suspended phase and of
the capillary number expressing the drop deformability, on (i) the effective rheological
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properties of the suspension, (ii) the evolution of the microstructure described in terms
of the drop shape, orientation, and relative position, and (iii) the motion of the
individual drops in the context of hydrodynamic self-diffusivity. Toose (1997) carried
out similar simulations with 24 drops per periodic cell over a broader range of areal
fractions and capillary numbers, and confirmed and extended the rheological data of
Li et al. (1996).

Loewenberg & Hinch (1996) presented a similar numerical investigation of the
analogous but more realistic problem in three dimensions. Because of high
computational cost, the maximum number of drops in each periodic box was 12, which
is adequate for deducing the rheological properties of a non-dilute suspension, but not
so large as to permit the investigation of the statistical properties of the evolving
microstructure with reasonable confidence. In fact, only a few drops per cell are needed
to deduce the rheological properties of a suspension within tolerable error. Loewenberg
& Hinch’s investigation included a parametric study of the effect of the ratio of the
drop to ambient fluid viscosity λ, for λ% 5. Their results for λ¯ 1 were in qualitative
agreement with those reported by Li et al. (1996), and this suggests similarities in the
nature of the two- and three-dimensional flow. In a more recent study, Loewenberg &
Hinch (1997) considered the interaction of two intercepting three-dimensional drops in
infinite shear flow, and extracted information on the hydrodynamic drop diffusivity in
a dilute suspension.

One important difference between the two- and three-dimensional flow concerns the
breakup of narrow threads extracted from highly extended drops owing to the
Rayleigh capillary instability, but such disfigured shapes did not arise in the
simulations. Another difference concerns the nature of drop collision and interface
coalescence: the lubrication forces in two-dimensional flow are considerably stronger
than those in three-dimensional flow. The interfacial deformability in both cases,
however, causes the formation of an interfacial dimple and accompanying coalescing
rim, and renders the three-dimensional and the two-dimensional motions similar at
near interface contact.

The numerical simulations of Loewenberg & Hinch (1996) established that the
particle fluidity expressed by the viscosity ratio λ has an important effect on the
rheological properties of a suspension. However, the precise way in which λ affects the
motion of a drop through the suspension, and the manner in which a collection of
drops arrange themselves in the flow have been discussed only in qualitative ways. For
example, highly viscous drops and drops of any viscosity whose interfaces have been
immobilized by surfactants are expected to stay close together for a long period of time
during interception, and this allows clusters to form. In contrast, drops with low
viscosity and mobile interfaces can effectively slide and roll over each other, and this
prevents aggregation. Indeed, Li et al. (1996) and Loewenberg & Hinch (1996) found
that cluster formation is not definitive in suspensions of liquid drops with λ¯ 1 with
fully mobile interfaces with constant surface tension. On the contrary, cluster
formation in suspensions of rigid particles has been observed in the laboratory and
demonstrated in the simulations beyond any doubt.

Another effect of the viscosity ratio λ concerns the stability of the interfaces and the
integrity of the suspended drops. During the flow, parts of the interfaces are subjected
to a local shearing motion which makes them susceptible to sustained oscillations due
to viscosity variations at sufficiently high capillary numbers. Although it is unlikely
that such oscillations will alter the global properties of the suspension in a fundamental
way at low and moderate shear rates, it is nevertheless likely to play an important role
in the stability of the dispersed phase under conditions of extreme deformation.
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F 1. Instantaneous configuration of a suspension of drops subject to simple shear flow
along the x-axis with velocity u

x
¯ky, showing the initial square and sheared periodic box.

Apart from the global rheological properties, an important aspect of a suspension
flow concerns the description of the individual particle motions in terms of a
hydrodynamic diffusivity tensor, defined in terms of the rate of change of the dyadic
variance of the particle centre displacement. Recent contributions to the theory and
computation of the self-diffusivity of rigid and deformable particles in dense or dilute
suspensions were made by Da Cunha & Hinch (1996), Morris & Brady (1996),
Madanshetty, Nadim & Stone (1996), Wang, Mauri & Acrivos (1996), Loewenberg &
Hinch (1996), and by a multitude of authors who contributed to a workshop dedicated
to this subject (Davis 1996). Li et al. (1996) confirmed that the seemingly random
motion of a drop in a suspension with λ¯ 1 can be described in terms of an effective
self-diffusivity tensor, computed the transverse component of this tensor, and
discussed its dependence on the deformability of the interfaces expressed by the
capillary number. The self-diffusivity in a non-dilute suspension for λ1 1 has not been
discussed in previous studies.

In this work, we investigate the influence of interfacial deformability and particle
fluidity on the flow of non-dilute suspensions of liquid drops in simple shear flow. The
numerical studies are similar to those performed by Loewenberg & Hinch (1996, 1997)
for the analogous problem in three dimensions, and extend those of Li et al. (1996) and
Toose (1997) to λ1 1. Consideration of the two-dimensional flow has the benefit that
the motion of a larger number of particles can be tracked for a longer period of time,
and the statistical properties of the microstructure and the apparently diffusive motion
of the individual drops can be assessed with less uncertainty. The maximum number
of drops employed in the present simulations is 25, which is still moderate and thus
barely enough for computing the self-diffusivity with tolerable error. Some trends may
nevertheless be deduced with reasonable confidence.

The numerical simulations are carried out by the boundary-integral method for
Stokes flow, which we have previously referred to as the method of interfacial dynamics
by analogy with the method of contour dynamics for vortex flow. Three important
features of the numerical method, to be discussed in subsequent sections, are :
computation of the doubly-periodic Green’s function of Stokes flow and its associated
stress tensor by tabulation and interpolation; complete deflation of the integral
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equation to allow for an iterative solution; and repositioning of interfaces at low
separations to prevent artificial coalescence.

2. Problem formulation

We consider the motion of a two-dimensional, doubly-periodic, mono-disperse
suspension of neutrally buoyant liquid drops with equivalent radius a and viscosity λµ,
suspended in an ambient liquid with viscosity µ. The drops translate and deform under
the influence of a simple shear flow directed along the x-axis with velocity u¢ ¯ (ky, 0),
where k is the constant shear rate, as depicted in figure 1. The flow pattern replicates
itself in the directions of two base vectors a

"
and a

#
that are convected by the

unperturbed simple shear flow. At the initial instant, the base vectors are chosen to lie
along the x- and y-axes and their lengths are equal to L. Thus the area of a periodic
cell is and remains equal to L#.

At the origin of computational time, we randomly distribute N identical circular
drops within each periodic box and, assuming that inertial effects are negligible, we
compute their subsequent motion by solving the equations of Stokes flow (e.g.
Pozrikidis 1997). Using the boundary-integral formulation, we find that the velocity at
a point x

!
that lies on an interface can be computed by solving the integral equation
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where D
l
stands for the interface of the lth drop in a periodic box, the tensor G is the

doubly-periodic Green’s function for the equations of Stokes flow with vanishing flow
rate across each face of a periodic cell, and T is the corresponding stress tensor.
Expressions for G and T in terms of Ewald sums are presented by Pozrikidis (1996),
van de Vorst (1996), and Charles (1997). The quantity ∆ f in the first integral on the
right-hand side of equation (2.1) is the jump in traction across the interfaces. In the case
of liquid drops with constant surface tension γ,∆ f¯γκn, where κ is the curvature of
a drop interface in the (x, y)-plane, and n is the unit vector normal to the interface
pointing into the ambient fluid.

Non-dimensionalizing all variables using the equivalent drop radius a as the
characteristic length, the inverse shear rate 1}k as the characteristic time, ka as the
characteristic velocity, and µk as the characteristic stress, we find that the motion of the
suspension depends on the drop capillary number Ca¯µka}γ, the viscosity ratio λ,
the areal fraction φ¯Nπa#}L#, the number of drops per periodic cell N, and the
distribution of the drops at the initial instant. In §5, we shall present numerical results
for φ¯ 0±30 and N¯ 25, and for two combinations fo values of Ca and λ.

In subsequent sections, we shall describe the shape of the individual drops in terms
of (i) the deformation parameter of an individual D, defined as D¯ (A®B)}(A­B)
where A and B are the maximum and minimum drop dimension, and (ii) the
orientation angle α subjected between the longest drop axis and the x-axis.

The rheological properties of the suspension will be described in terms of the areal-
average value of the stress tensor, designated with pointed brackets, which can be
placed in the form
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where e is the rate of deformation tensor. The effect of the suspended phase is
manifested in the particle stress tensor σp defined as
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For liquid drops with constant interfacial tension γ, the first integral on the right-hand
side of (2.3) may be expressed in the computationally preferred form 2Σ(l), where
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is the interfacial energy tensor, and t is the unit vector tangential to the interface
pointing in the counterclockwise direction (Zhou & Pozrikidis 1993b). This form
makes the symmetry of the particle stress tensor apparent.

A simple computation exploiting the periodicity condition shows that the diagonal
elements of ©eª vanish, and the off-diagonal elements are equal to "

#
k. Accordingly, we

define the effective viscosity of the suspension µ
eff

in terms of the relation

kµ
eff

¯©σ
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ª. (2.5)

To further characterize the motion of the suspension, we introduce the first normal-
stress difference

N
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¯©σ
xx
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ª. (2.6)

A positive value of N
eff

indicates that the suspension behaves like a polymeric solution
with some elastic properties.

To study the statistics of the relative position of the centres of two drops, we
introduce the pair distribution function g(r, θ), which is defined in terms of the
probability density function that the centre of a drop is located within a small area
centred at the radial and angular positions r and θ, while a test drop is located at the
origin; the probability density function is then normalized by the particle number
density N}L# to yield g(r, θ) (e.g. Hansen & McDonald 1986). The integral of g(r, θ)®1
over the whole area of the flow is constant, equal to zero at all times. Peaks and valleys
in the graph of g(r, θ) reflect the presence of ordered structure.

Finally, we introduce the number-averaged mean drop-cluster size

©sª¯3
s

sn
s

3
s

n
s
, (2.7)

where n
s
is the number of drops that form an s-sized cluster. The computation of n

s
will

be discussed in §5.4.

3. Numerical method

The numerical method is similar to that developed by Li et al. (1996). An important
new feature is the iterative solution of an integral equation (2.1) for the interfacial
velocity. Previously, we stipulated λ¯ 1 and obtained an integral representation; thus,
it was not necessary to solve an integral equation. To make the computational cost
affordable, it is imperative to solve the integral by an iterative method, and we chose
the simplest method of successive substitutions implemented by Jacobi or Gauss–Siedel
iterations.

We found that as the number of drops N is increased, or the viscosity ratio λ is
raised, or two interfaces come close to one another, the number of iterations necessary
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to reach a specified level of accuracy becomes larger. There are critical thresholds of
N and λ where the iterations diverge even though the interfaces have perfectly circular
shapes. In theory, the iterations should converge for any number of drops and for any
non-zero and non-infinite value of λ (e.g. Pozrikidis 1992), but, in practice, the integral
operators lose compactness owing to the various numerical approximations. The
iterations can be made to converge by introducing a larger number of marker points
around each interface or by applying a higher-order scheme for computing the
interfacial integrals, but the numerical method is no longer affordable. With 25
randomly distributed circular drops and 32 points around each interface, we could not
obtain a convergent solution for λ outside the window of (0±5, 3).

To circumvent this stumbling block, we applied the method of eigenvalue deflation
described by Pozrikidis (1992, pp. 124–126) for three-dimensional flow and by Zhou &
Pozrikidis (1993a) for two-dimensional flow in a channel with a single interface.
Considering the mth interface, we introduce three normalized eigenfunctions of the
double-layer potential expressing rigid body motion, given by
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, are the unit vectors along the x-, y-, and z-axes, and X (m) is the centroid

of the mth interface. The normalization constants β
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eigenfunctions satisfy the orthonormalization constraint
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for i or j¯ 1, 2, 3. Next, for a point x
!

that lies at the mth interface, we replace the
integral equation (2.1) with the following integral equation for an artificial velocity-like
variable � :
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where L
m

is the total arclength of the mth interface. Having computed the solution of
(3.3) by the method of successive substitutions, we produce the interfacial velocity by
setting
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Charles (1997) proves that equations (3.3) and (3.4) imply the original equation (2.1).
That the deflation was implemented correctly was confirmed by ensuring that the

original and deflated systems produce identical solutions. Enabling the deflation
reduces the number of necessary iterations by a large factor, in some cases by a factor
of one hundred. We must emphasize again that deflation is imperative, not merely an
option; without it, we would not have been able to carry out the simulations.

An important practical feature of the numerical method is the computation of the
doubly-periodic Green’s function G and associated stress tensor T by tabulation and
interpolation. The symmetries of these tensors are fully exploited to reduce the size of
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the look-up tables. The non-singular parts of G and T were tabulated as functions of
the x-component of the base vector a

#
, denoted as a

#"
, and of the relative x- and y-

positions of the singular and field points, using the interpolation variables (x®x
!
)}L,

(y®y
!
)}L, and a

#"
}L. For the computation of G, the interpolation space was

discretized into a three-dimensional 129¬65¬129 grid. The maximum absolute error
due to the interpolation was determined to be of the order of 10−& over the domain of
independent variables. For the computation of T, memory considerations required an
interpolation grid of reduced size 129¬129¬32. The absolute error due to the
tabulation was also found to be of the order 10−&. The accuracy of the interpolation
was confirmed by performing several tests where the motion was computed with the
Green’s function evaluated directly or by interpolation, and ensuring that the results
are identical within the expected numerical error. For λ1 1, the interpolation of the
stress tensor alone reduced the computational cost by a factor of approximately one
hundred for a suspension with 25 drops.

When the viscosity ratio is of the order of unity or higher, and the capillary number
is sufficiently small so that the particles are not notably deformable, the system of
ordinary differential equations descending from the boundary integral formulation is
stiff. As a result, a very small timestep is required to describe accurately the motion
during the rolling of two drops at interception. In the computations of Li et al. (1996)
for λ¯ 1, the timestep at the lowest capillary number considered was set automatically
using an error estimator that is inherent in the 23 method (e.g. Pozrikidis 1998). If
the timestep is not decreased to a sufficiently small level during these critical stages of
the motion, the interfaces coalesce in an unphysical fashion. In solving the integral
equation (2.1) for λ1 1, two troublesome types of behaviour were found to occur.
First, if two drop interfaces are close but not touching, the iterations converge so
slowly that they fail to meet the preset convergence criteria. Secondly, if the
interpolated profiles of the drops actually overlap, the iterations diverge. In either case,
the exploratory step involved in the adaptive timestepping method where the
truncation error is estimated and the size of timestep is determined, could not be
completed.

A very small timestep is thus required at combined conditions of high viscosity ratio
and low or moderate capillary numbers, but cannot be afforded in the parametric
studies. As a compromise, we implemented a method that repositions the interfaces of
two intercepting drops at close proximity, in a manner that keeps them apart during
these critical stages of the motion. The method and its consequences on the character
of the motion are discussed in the Appendix and in more detail by Charles (1997). For
λ¯ 1, this modification yielded a speed-up factor of approximately 5 for a test with
three drops, where one drop touches the other two drops. For λ1 1, the modification
was the only practical approach for obtaining converged solutions. It is interesting to
note that the same general approach forms the basis for detecting holes in meshes of
chimera overlapping grids produced by the  grid generation program (Suhs &
Tramel 1991). A similar regularization scheme was used in the numerical method of
Bossis & Brady (1984), and its consequences were discussed by Dratler & Schowalter
(1996).

4. Two-drop interactions

A brief examination of the nature of two-drop interactions allows us to develop
insights into the elementary motions governing the behaviour of dilute systems, and is
a natural prelude to the large-scale simulations with 25 drops.
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(a) (b) (c)

t

F 2. Two-drop interactions : sequences of drop profiles during first crossing for Ca¯ 0±3
and (a) λ¯ 0±05, (b) 1±0, (c) 10, at times kt¯ 0±0, 2±0, 4±5, 7±0, 9±5 and 12±0.

Figure 2 illustrates the interaction of a pair of drops for a}L¯ 0±15, Ca¯ 0±30, and
λ¯ 0±05, 1 and 10, during the first crossing, at kt¯ 0, 2±0, 4±5, 7±0, 9±0 and 12±0. At
the initial instant, the drops are separated by the distance 0±5L along the x-axis, and
their centres are displaced upward or downward in an alternating manner by the
distance δ¯ 0±25a. It is evident that the deformations are more prominent at the lowest
value of λ. Figure 3 displays the evolution of the lateral drop centre displacement ∆y,
deformation parameter D, inclination angle α, and suspension effective viscosity and
first normal-stress difference, for λ¯ 10. It is instructive to divide the interaction into
five stages represented by the five panels shown down the right-hand side of figure 3:
far approach (stage 1) ; near approach (stage 2) ; crossing (stage 3) ; near recession
(stage 4) ; far recession (stage 5). The corresponding times are marked on the left-hand
panels.

The y-coordinate of the right drop centre displayed in figure 3(a) starts at a relatively
low value at far approach (stage 1), reaches a maximum displacement at crossing (stage
3), and diminishes to a lower value at far recession (stage 5) which is somewhat higher
than the initial value at stage 1. The effective viscosity shown in figure 3(d ) rises from
an initial value at far approach (stage 1) to a peak value just before near approach
(stage 2). This peak also corresponds to a maximum drop rotation found at the same
time in figure 3(c). The effective viscosity then drops to a minimum at the stage of drop
crossing (stage 3). This extreme in the effective viscosity is in concert with a peak in the
normal-stress difference. The distortion of the drop interfaces prior to crossing can also
be seen in the variation of the drop deformation parameter in figure 3(b), showing that
the deformation parameter actually peaks slightly before the crossing at stage 3.

Each drop recovers from the deformations suffered to accommodate the passage of
the other. By the time of crossing (figure 3c), the drops have rotated well past their
initial orientation, and have reached a maximum clockwise inclination just before near
recession (stage 4). This over-rotation is also visible in figure 3(d ) as the first peak in
the effective viscosity after the crossing (stage 3), just before near recession (stage 4).
The drop shapes also rebound reaching a minimum in the drop deformation parameter
and a local maximum in the effective viscosity shortly after near recession (stage 4).

Normalized suspension properties for the three cases λ¯ 0±05, 1, and 10 are plotted
in figure 4. The average cluster size plotted in this figure with the solid line serves as
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F 3. Two-drop interactions : suspension properties for λ¯ 10 and Ca¯ 0±3. (a) Lateral
displacement of the drop centres ; (b) drop deformation parameter ; (c) drop orientation angle ; (d )
suspension effective viscosity and normal-stress difference. The profiles on the right-hand side
correspond to the points marked on the graphs.
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F 5. Two-drop interactions : the net lateral displacement of two intercepting drops after the
first crossing as a function of Ca and λ ; δ is the initial drop displacement normal to the x-axis.

a threshold to indicate whether the drops are close enough to be considered as a
strongly interacting pair. The effect of the interaction on the rheological parameters for
the most deformable drops (figure 4a) is manifested in a relatively large window
where the drops are close enough to be considered as forming a cluster at the first
crossing. At subsequent crossings, the window shrinks considerably. For λ¯ 1
corresponding to figure 4(b), the interaction window shrinks so rapidly that the cluster
size criteria discussed in §5 fail to identify the pair after the second crossing, as the
drops have migrated laterally too far. In contrast, for λ¯ 10 corresponding to figure
4(c), at least three crossings are identified by the windowing threshold of the cluster size
criteria. In this case, all three crossings are characterized by first a rise in the effective
viscosity, a rapid change in the orientation angle of the drops, and finally a rise and fall
of the drop deformation parameter whose peak is centred in the window created by the
cluster size threshold.

The combined and individual effects of the viscosity ratio and capillary number on
the net displacement after the first crossing, ∆y, is illustrated in figure 5 for a}L¯ 0±15
and δ}a¯ 0±25. Note that the λ and Ca axes are logarithmic. As λ is raised, the drops
become less flexible and ∆y tends to zero for any value of the capillary number. At high
values of Ca, the variation of ∆y with λ is non-monotonic, reaching a maximum and
a minimum within the range shown in figure 5(b). For example, for the three motions
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corresponding to Ca¯ 0±30, the lowest displacement occurs when λ¯ 10, but the
displacement for λ¯ 1 is slightly higher than that for λ¯ 0±05. Thus the interface
deformability allows for the lateral accommodation of two intercepting drops only up
to the point where the drops deform so much that the requisite lateral movement of
their centroids is diminished. The lateral accommodation is then accomplished not so
much by a lateral shift of the centroid, as by the elongation and distortion of the
interfaces as they slide by each other in an almost serpentine fashion. The contour plot
shown at the base of the plots in figure 5 reveals that maximum lateral displacement
over Ca and λ is attained at CaE 0±3 and λE 0±7. These are the sets of conditions at
which the drops in a dilute suspension are expected to exhibit the most active motion.

The non-monotonic nature of the lateral displacement values for the two-drop
suspension were also observed in simulations of three-dimensional drops by
Loewenberg & Hinch (1997). Their figure 7 shows a non-monotonic variation of the
cross-flow separation with λ at Ca¯ 0±30, with a minimum occurring somewhere
between λ¯ 4 and 20. Their figure 10 shows a maximum at Ca¯ 0±3 for λ¯ 1. Thus,
the simulations of both the two- and three-dimensional flow indicate a region of the
(λ,Ca) parameter space of peaked net displacement, invalidating scaling arguments
based on volume or areal fraction alone.

5. Simulations with 25 drops

In this section, we present the results of large-scale dynamic simulations with 25
drops, for two values of the viscosity ratio, λ¯ 1 and 10, and two values of the
capillary number Ca¯ 0±1 and 0±3, a total of four combinations, all for N¯ 25 and
areal fraction φ¯ 0±30. The simulations for λ¯ 1 provide us with a frame of reference
for assessing the effect of the viscosity ratio. A limited number of simulations were
carried out for different values of λ, but the run times were not long enough to justify
their discussion. Previous work has shown that the motion for λ¯ 1 is typical of that
for λ less than roughly 2 (e.g. Loewenberg & Hinch 1996). The value φ¯ 0±30 expresses
the balance of our desire to keep the areal fraction of the dispersed phase as large as
possible, so that the suspension is not dilute, and the practical concern that the
performance of the numerical method deteriorates, and the computational expense
increases drastically, when the interfaces are densely packed.

A fixed reference configuration with 25 randomly distributed circular drops was used
as an initial condition in all cases. A second fixed configuration provided us with an
alternative initial condition for carrying out confidence tests for each combination. A
typical simulation up to the time kt¯ 50 required up to 3  hours on the Cray C90
for λ¯ 1, and 45 hours for λ¯ 10; this high computational cost explains the scarceness
of our case studies. The actual  times vary according to the magnitude of drop
deformation. Increasing the capillary number allows the interfaces to deform more
severely and requires a higher number of interfacial marker points.

In figure 6(a), we depict instantaneous profiles of the interfaces for λ¯ 1 and Ca¯
0±10, at time kt¯ 50. The effect of the capillary number can be deduced by comparing
these profiles to those shown in figure 6(b) corresponding to λ¯ 1 and Ca¯ 0±30.
Greater drop elongations and kidney-shaped interfaces develop during, and even after,
drop interception at the higher capillary number. Increasing the viscosity ratio to
λ¯ 10 causes significant changes in the shapes of the interfaces and on the spatial
distribution of the drop centres. Comparing the profiles shown in figure 6(c, d ),
corresponding to λ¯ 10, to those shown in figure 6(a, b) for λ¯ 1, we see that the
high-viscosity drops have more compact shapes, but occasional large deformations are
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F 6. Flow of a doubly-periodic suspension with 25 drops per periodic box. Drop interface
profiles at kt¯ 50 for (a) λ¯ 1, Ca¯ 0±1; (b) λ¯ 1, Ca¯ 0±3; (c) λ¯ 10, Ca¯ 0±1; (d ) λ¯ 10,
Ca¯ 0±3. (e) Distribution of rigid spheres in a sheared mono-layered suspension presented by Bossis
& Brady (1984) ; note the similarities with the distribution displayed in (c).

observed at the higher capillary number. More importantly, the more viscous drops
seem to form linear chains oriented at an angle of 135° with respect to the x-axis. It is
furthermore striking to observe the similarities between the configuration shown in
figure 6(c), and that shown in figure 6(e) for a suspension of rigid sphere with volume
fraction equal to 0±40, borrowed from Bossis & Brady (1984).

In the next subsections we shall discuss the motion of the suspension in terms of the
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both averaged over all drops, for the four case studies shown in figure 6.

geometry of the microstructure and the effective rheological properties. Time-average
values of time-dependent quantities were computed by integrating over time period
from kt¯ 10 to 50, and then taking the mean of the duplicate simulations. The initial
period of each simulation was discarded to filter out transient start-up effects. We shall
see that the difference in the results of the duplicate simulations corresponding to
identical conditions are statistically insignificant compared to the time-average values,
and this suggests that the initial state loses its significance after the suspension has
evolved for several periods.

5.1. A�erage deformation and orientation

Figure 7(a, b) illustrates the evolution of the instantaneous drop deformation and
inclination, averaged over all drops, for the four case studies considered. In all cases,
the mean deformation increases from the value of zero and then fluctuates around well-
defined average values. As expected, increasing the capillary number raises the level of
the deformation, and the effect is much more pronounced when λ¯ 1 than 10. High-
viscosity drops take a longer time to respond to fluctuations in the ambient flow. The
amplitude of the fluctuations is commensurate with the time-average values. Figure
7(b) reveals that the effect of the capillary number on the time-average drop inclination
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Ca λ Run ©D{ ª ©α- ª}π µ-
eff

}µ N{
eff

}µk

0±1 1±0 1 0±170 0±202 1±653 0±400
1±0 2 0±167 0±200 1±644 0±392
1±0 Avg 0±169³0±002 0±201³0±001 1±649³0±004 0±396³0±004

10±0 1 0±143 0±119 1±900 0±783
10±0 2 0±138 0±115 1±901 0±803
10±0 Avg 0±141³0±002 0±117³0±002 1±9008³0±0007 0±793³0±01

0±3 1±0 1 0±399 0±121 1±415 0±735
1±0 2 0±400 0±122 1±421 0±706
1±0 Avg 0±4002³0±0005 0±1220³0±0001 1±418³0±003 0±72³0±01

10±0 1 0±215 0±054 1±788 0±495
10±0 2 0±212 0±056 1±793 0±507
10±0 Avg 0±214³0±001 0±055³0±002 1±791³0±002 0±501³0±006

T 1. Time-averaged geometrical and rheological properties of random suspensions

Ca λ D α}π

0±1 1±0 0±099 0±217
10±0 0±071 0±123

0±3 1±0 0±284 0±160
10±0 0±102 0±054

T 2. Deformation and inclination of a steadily deformed drop in simple shear flow

angle is as strong for λ¯ 10 as it is for λ¯ 1. In all cases, the drops start elongating
at an angle of 45° with respect to the x-axis, and then incline towards it. The large
fluctuations are evidence of drop interception and cluster or chain formation. In the
computations, the orientation angle is restricted to lie within the window [90°,®90°].
We found that, although some individual drops occasionally rotate to an inclination
that is less than zero, the average angle remains positive in all cases.

In the first two columns of table 1, we present the time-average values of the drop
deformation and inclination for the individual simulations, as well as their mean
values. The trends discussed in the previous paragraphs, and the minor role of the
initial configuration, are apparent. In table 2, we present the asymptotic values of the
deformation and inclination angle of a steadily deformed drop in simple shear flow, at
corresponding conditions. Interestingly, while the average deformation for the
suspension is consistently approximately twice that for the solitary drop, the average
inclination is remarkably close to that for the solitary drop. This indicates that packing
drops in a suspension promotes their overall elongation but does not have a great
impact on its orientation; the latter is determined primarily by the strength of the
imposed shear flow.

5.2. Effecti�e rheological properties

In figure 8(a, b), we present the evolution of the effective viscosity and first normal
stress difference defined in §2. For λ¯ 1, the effective viscosity curves rise from the
value of unity ; for λ¯ 10 they rise from a higher value; and in both cases they fluctuate
around well-defined mean values. The amplitudes of the fluctuations seem to be
insensitive to the physical parameters of the flow. Increasing the capillary number,
while holding the viscosity ratio constant, reduces the mean value of the effective
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F 8. Evolution of the suspension effective viscosity and normal-stress difference for the four
case studies shown in figure 6.

viscosity: The particles are able to deform in order to accommodate their neighbours,
and the suspension behaves like a shear-thinning medium. For all four sets of
conditions, the normal stress difference curves rise from the value of zero and then
fluctuate around well-defined mean values.

For λ¯ 1, the average value of the normalized viscosity µ
eff

}µ for Ca¯ 0±1 or 0±3
is, respectively, equal to 1±65 or 1±42. These values are somewhat lower than those
reported by Li et al. (1966) for φ¯ 0±4, as expected, and in excellent agreement with
the values reported by Toose (1997). Loewenberg & Hinch (1996) report the
corresponding higher values 2±5 and 1±5 for suspensions of three-dimensional drops at
the volume fraction of 0±30 at these capillary numbers. An explanation for the
noticeable quantitative differences at the low capillary number Ca¯ 0±10 is elusive.

Increasing the viscosity ratio from 1 to 10, while holding the capillary number
constant, raises the mean value of the effective viscosity by a factor of approximately
1±2. As the viscosity ratio becomes larger, the drops become more rigid and the effective
viscosity tends to that of a random suspension of freely-suspended circular cylinders.
The simulations of Brady & Bossis (1985) for mono-layered suspensions of rigid
spheres at volume fraction 0±3 predict an effective viscosity nearly equal to 2µ, which
is surprisingly close to the mean value for λ¯ 10 shown in figure 8(a). The effects are
seen clearly in the third column of table 1.
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π highlighted.

Figure 8(b) shows that increasing the capillary number, while holding the viscosity
ratio constant, has a mixed influence on the first normal stress difference. For λ¯ 1,
the normal stress difference rises as the capillary number is increased; whereas for
λ¯ 10, it is reduced. Increasing the viscosity ratio while holding the capillary number
constant also has a mixed influence. As λ is raised, the effective normal stress difference
rises at the low capillary number, and drops for the higher capillary number. This
behaviour is nevertheless consistent with the results of Zhou & Pozrikidis (1993a) for
a single file of drops in plane Couette flow. For λ¯ 1, these authors found that the
normal stress difference increases monotonically as the capillary number is raised,
whereas for λ¯ 10 they found that it increases from zero, it peaks, and then it
decreases and tends to an asymptotic limit. The mixed effect just begins to show in the
fourth panel figure 12 of Loewenberg & Hinch (1996) for a suspension of three-
dimensional drops at the highest viscosity ratio considered, λ¯ 5.

5.3. Drop-centre pair distribution function

To describe the geometrical arrangement of the suspended phase, we use the drop
centre pair distribution function g(r, θ) defined in §2.3. In figure 9, we present a typical
three-dimensional graph of g(r, θ) for one of the four cases considered, λ¯ 10 and
Ca¯ 0±1. In figure 10, we present graphs of g with respect to r for θ¯ 135° ; the upper
graph is for λ¯ 1 and the lower graph for λ¯ 10. To illustrate the effect of λ at a fixed
capillary number, in figure 11 we present graphs of g with respect to r at θ¯ 135° ; the
upper graph is for Ca¯ 0±3 and the lower graph for Ca¯ 0±1. The angular ray θ¯
135°, corresponding to the compressive eigenvector of the rate of strain tensor of the
simple shear flow, carries the most information on the relative drop distribution.

First, we examine the effect of the capillary number with reference to figure 10. For
λ¯ 1 and Ca¯ 0±1, the graph of g shows a sharp peak at a value that is slightly less
than r¯ 2a, and a secondary peak at a value that is slightly less than 4a, as illustrated
in figure 10(a). This behaviour suggests the clustering of up to three drops in this
orientation, with a good probability. Raising the capillary number in this case shifts the
radial location of the first peak inward to a value of about 1±5a, and that of the second
and third peaks to 3±0a and 4±5a. The higher the capillary number, the more drops can
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F 10. Effect of Ca on the drop centre pair distribution function g plotted as a function of r
for θ¯ $
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π, Ca¯ 0±1, 0±3 and (a) λ¯ 1, (b) 10.

squeeze together to form a structure along this orientation. For λ¯ 10, the effect of the
capillary number is not quite so dramatic, as illustrated in figure 10(b). Although the
radial position of the first peak is approximately equal to 2a for both capillary
numbers, the secondary peak at 4a is much more clearly defined for the lower capillary
number. A third peak at the radial distance 6a appears for the low capillary number,
but the reliability of the results is questionable at this high value of r.

Figure 11 shows that increasing λ while holding the capillary number constant shifts
the radial position where g starts taking non-zero values away from the origin and
toward the rigid-particle limit 2a. In addition, it causes the local peaks to be shifted
toward larger values of r, and results in fewer but better defined secondary peaks, the
first two of which are located at the first two multiples of the radial position of the first
peak. In both cases, the radial distance at which peaks can be identified is no greater
than 5a. The results for λ¯ 10 are similar to those reported by previous authors for
suspensions of rigid spheres and, in particular, by Brady & Bossis (1988). The graphs
in figures 10 and 11 illustrate how the character of suspension changes from emulsion-
type to suspension-type by altering the fluidity of the suspended phase.
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5.4. Particle clusters

The significance and consequences of cluster formation on the dynamics of a dense
suspension of rigid particles have been described extensively by several authors (e.g.
Brady & Bossis 1988; Chang & Powell 1993). In contrast, their role, or even a way for
computing cluster size, in suspensions of liquid drops have not been decided. In the
case of suspensions of rigid particles, the random motion of the particles and the
development of strong lubrication forces at close proximity causes the particles to form
long-lived structures and the effective viscosity of the suspension to increase, and is
responsible for shear-thickening behaviour. Brady & Bossis (1985) showed that the
lubrication forces scale directly with the cluster size.

Computations of cluster size in suspensions of spherical particles have typically
employed a criterion for the association of a particle with a cluster, that the particle
centre-to-centre separation be less than 2±02 the particle radii. For liquid drops, this
criterion could no longer involve a constant inter-drop distance. Li et al. (1996)
considered two different methods of cluster association based on the minimum
separation distance between the interfaces. The first method uses a threshold involving



224 R. Charles and C. Pozrikidis

0 10 20 30 40
kt

0.2

0.4

0.6

0.8

1.0
(b)

50

0

0.2

0.4

0.6

0.8

1.0
(a)

F 12. Comparison of the normalized drop deformation parameter, averaged over all drops, and
normalized average cluster size for (a) λ¯ 10, Ca¯ 0±1 corresponding to the least deformable drops,
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the instantaneous average deformation ©Dª, with a value (0±15­©Dª) a ; the second
method uses a constant separation threshold value of 0±30a, where a is the initial radius
of the circular drops. There was no clear consensus as to which, if any, was the best
choice. The first method seemed to produce results that qualitatively tracked
fluctuations in the instantaneous effective viscosity, which is desirable. On the other
hand, when the cluster sizes were averaged over all times, the second method produced
a cluster size that is a decreasing function of the capillary number.

Further consideration of the efficacy of the method for cluster definition based on
particle separation indicated that the previous two measures are unnecessarily
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conservative. Their inception was motivated by concerns that, for highly deformed
drops, situations might arise where the drops would be oriented end-to-end along their
major axes, and thus incorrectly be excluded from the cluster based on a criterion based
upon drop centre-to-centre separation. The results presented in this section show that
even highly deformed drops at close approach rotate to accommodate the presence of
their neighbours. With these considerations in mind, we performed cluster size
calculations using a threshold value for the centre-to-centre separation 2±02 times the
initial drop radii to associate a given drop with other nearby drops in a cluster.

In figure 12, we plot the evolution of the mean cluster size ©sª for the most rigid
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and least deformable drops corresponding to λ¯ 10, Ca¯ 0±1, and for the least rigid
most deformable particles corresponding to λ¯ 1, Ca¯ 0±3, and compare it with the
evolution of the mean drop deformation. In figure 13, we compare the evolution of the
mean cluster size with the evolution of the effective viscosity. It is most interesting to
observe the behaviour of the most rigid and least deformable drops in figure 12(a),
where we note a strong correlation between the cluster size and average drop
deformation. In figure 14, we compare the evolution of the average drop orientation
angle and effective viscosity, and note a similar strong correlation. It is most interesting
that the correlated peaks of drop inclination and effective viscosity in figure 14 are out
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Ca λ ©saª D{
yy

}a#k

0±1 1±0 1±298 0±0279
10±0 1±199 0±0152

0±3 1±0 1±402 0±0144
10±0 1±260 0±0113

T 3. Time-average cluster size and drop hydrodynamic diffusivities for a random suspension
with 25 drops per periodic box

of phase with the correlated peaks of the drop deformation and cluster size shown in
figure 12.

Certain physical mechanisms can be deduced from these results. A deformable drop
in an aggregate rotates readily in an attempt to accommodate its neighbours, as well
as elongates to allow for maximum packing. The ability of the drops to accommodate
each other reduces the effective viscosity of the suspension, as indicated by the phase
lag between the fluctuations of the effective viscosity and those of ©sª in figure 13(a).
One may then argue that the established correlation between cluster size and effective
viscosity in suspensions of rigid spherical particles can be attributed to the inability of
the particles to accommodate each other by deformation. Non-spherical particles can
accommodate each other by rotation, and this suggests that suspensions of elongated
rigid particles behave in many respects differently than suspensions of rigid spheres.

The cluster size and average drop deformation for the least rigid and most
deformable drops with λ¯ 1 and Ca¯ 0±3, shown in figure 12(b), show a good
correlation, but the average drop inclination has de-correlated with the effective
viscosity, as shown in figure 14(b). In fact, the correlation between the average drop
deformation to cluster size can be argued to be qualitatively better than that for the
most rigid drops with λ¯ 10 at Ca¯ 0±1. At one end of the spectrum, λ¯ 10 and Ca¯
0±1, stresses in the flow are dealt with by drop rigid-body translation and rotation
and then by deformation. At the other extreme, λ¯ 1 and Ca¯ 0±3, the suspended
drops lack the interfacial rigidity necessary for coherent rotation and react primarily
through deformation. Unlike in suspensions of rigid particles where there is a direct
connection between cluster formation, build-up of inter-particle lubrication forces and
rise in the effective viscosity, there is no definitive correlation between the effective
viscosity and the drop cluster size in suspensions of deformable drops.

Time-average values of the mean cluster size ©saª are given in table 3. The values for
the most rigid drops are in excellent agreement with those reported previously for
spherical particles by Chang & Powell (1993, figure 12).

5.5. Drop hydrodynamic diffusi�ity

When observed at a sequence of time intervals that are large compared to the inverse
shear rate, the seemingly random motion of a tagged drop can be described in terms
of an effective hydrodynamic diffusivity tensor D which is defined in terms of the
dyadic variance of the drop-centre displacement; that is, the second-order tensor
product of the drop-centre displacement from the unperturbed path, X (e.g. Li et al.
1996; Davis 1996). As kt tends to infinity, the transverse component of D is given by
the common limit of the ratios
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where the angle brackets designate instantaneous averages over all particles. In figure
15, we plot the three ratios shown in equation (5.1) for the four cases considered in the
simulations. Averaging the results over the time period between 25kt and 50kt yields
the horizontal lines. Although 25 particles are hardly enough for the diffusivity to be
computed with adequate precision, some trends can be noted. Li et al. (1996) found
that even with 49 particles, the results are still subject to a substantial amount of
statistical uncertainty.

Time-average values for the diffusivity are shown in table 3. As the capillary number
is raised from 0±1 to 0±3, the mean value of D

yy
decreases from 0±0279 ka# to 0±0152 ka#

for λ¯ 1, and from 0±0144 ka# to 0±0113 ka# for λ¯ 10. This behaviour is in agreement
with that reported by Li et al. (1996) for φ¯ 0±40 and λ¯ 1. Holding the capillary
number constant and increasing the viscosity ratio reduces the value of D

yy
for both

Ca¯ 0±1 and 0±30. This trend indicates once more that in this limit the suspension
tends to exhibit a solid-particle-like behaviour. The diffusivity of rigid particles is lower
than that of liquid drops at all volume fractions.

6. Discussion

The significance of the suspended-phase viscosity considered in this work provides
us with a vehicle for isolating the effect of particle fluidity, but not for separating it
from the effect of interfacial mobility. As the viscosity ratio is raised, the drops become
less deformable and behave like rigid bodies. The effect of interfacial mobility,
pertinent to readily deformable drops with totally or partially immobilized interfaces
and liquid capsules enclosed by thin membranes, has not been examined, although
solitary capsules enclosed by elastic membranes have been studied as models of red
blood cells (e.g. Barthe' s-Biesel & Rallison 1981; Ramanujan & Pozrikidis 1998). The
effect of interfacial mobility could be investigated best by considering suspensions of
capsules enclosed by inextensible but readily deformable membranes with negligible
resistance to bending, resembling paper sheets. Biological cells with bi-lipid interfacial
layers fall in this category. Unfortunately, the numerical simulation of the motion of
such capsules is challenged by numerical instabilities that are manifestations of
wrinkling under compression (Zhou & Pozrikidis 1995).

The development of efficient simulation methods is a prerequisite for further studies
with more complex particles, such as the ones described in the last paragraph. We have
investigated the implementation of the method of interfacial dynamics on computers
with parallel-processor architecture. The kernel of the evaluation procedure for
equation (2.1) is an N-body type calculation which has typically shown excellent
performance in parallel computation. A preliminary implementation of the method has
shown excellent speed-up; in this case, the parallelism is based upon the granularity at
the level of an individual drop. One requirement is that the interpolation tables for the
computation of the Green’s function are readily accessible by the individual processors.

The use of interpolation tables transforms the problem of evaluating a long series of
expressions to the problem of retrieving relevant quantities from the computer
memory, and then performing the simple task of trilinear interpolation. Although
responsible for a speed-up of orders of magnitude in computation time, this shift in
evaluation is an impediment to efficient use of the machine as the computation becomes
memory-bounded. Any further significant increase in the size of the physical system
will result in eventual degradation of the performance where most of the run time will
be wasted in the  to access the system memory. With the advent of massively-
parallel computers with sufficiently large local memory, it should now be possible to
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A

B

F 16. Detection of the mutual interface of two overlapping polygons. The area of overlap is
identified with the polygonal area A, and then reduced by computing the intersections of the straight
lines that are extension of the sides of polygon B with polygon A.

load the interpolation tables onto the local memory of each node and then to perform
calculations where memory contention is correspondingly reduced. The field of
computer simulation of suspensions of deformable particles in domain with complex
geometries will greatly benefit from these hardware advances.

This work was supported by the National Science Foundation, the SUN
Microsystems Corporation, and the San Diego Supercomputer Center. Acknow-
ledgement is made to the Donors of the Petroleum Research Fund, administered by
the American Chemical Society, for partial support of this research. Computing time
was provided by the San Diego Supercomputer Center. Special thanks are extended to
C & C Engineering.

Appendix. Numerical deformation of two intercepting drops

Numerical inaccuracies due to timestepping cause two intercepting drops at low
capillary numbers to artificially coalesce at a finite time. Interface crossing does not
appear when the timestep is reduced to a sufficiently low level either manually or
automatically using an adaptive method. Unfortunately, even with adaptive
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F 17. Overlap detection, correction, and isotropic expansion of three circular overlapping
drops. The dotted lines forming regular polygons outline the overlapping interfaces ; the dashed lines
connect the modified marker points ; and the solid lines show the drop interfaces interpolated with
cubic splines. Note that interface repositioning does not change the number of marker points along
each interface.

timestepping, the required reduction in step size can be several orders of magnitude
smaller than that used when the drops are not in close proximity, and this results in an
exorbitant computational cost. Owing to the ability of the drops to deform, artificial
coalescence is not observed at higher capillary numbers or lower viscosity ratios.

A numerical method was developed to avoid this difficulty, albeit with a compromise
in the physics of the near-contact motion. The algorithm relies on a technique
borrowed from computer graphics technology, following Angell & Griffith (1987,
pp. 98–102). A more detailed description is provided by Charles (1997). In the first
stage, the polygons formed by connecting successive marker points along the interfaces
of either one or two drops are tested for possible overlap. Consider the two polygons
A and B depicted in the first panel of figure 16. Initially, the polygon of intersection is
defined by the entirety of the points defining polygon A, as shown in the second panel
of figure 16; the extension of successive sides of polygon B are then tested to reduce
the alleged area of intersection, as shown in subsequent panels of figure 16. After the
intersection polygon has been found, a slight modification of the procedure described
by Angell & Griffith (1987) is used to determine its major diagonal defining the so-
called mutual interface of the two original polygons. Up to this point, no action has
been taken on the polygon vertices defining the interfaces of the drops. At the next
stage, the mutual interface is tested against all segments to modify the interface
polygons. If a vertex of a polygon is found to lie on the wrong side of the mutual
interface, it is shifted normal to it to produce two touching but non-intersecting
polygons. This, of course, results in a reduction in the polygon area for which we
compensate.

In our implementation, only pairs of drops whose centre-to-centre spacing was less
than three equivalent drop radii were tested for overlap. Each drop pair was tested
twice, where the interface of one drop or the other was used to define the test polygon.
At the stage of testing for crossing of the polygon and of the mutual interface, the latter
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F 18. Testing of the effect of interface repositioning by a dynamical simulation with three
drops. (a) Initial configuration of three nearly touching drops; (b) size of the timestep determined by
an adaptive time-integration method for λ¯ 1 and Ca¯ 0±0833 with the interface repositioning
module disabled, showing large variations ; the horizontal dotted line shows the constant timestep
used to test the repositioning method; (c) effective viscosity computed with ——, the repositioning
method enabled and constant timestep of k∆t¯ 0±02, –––, the repositioning method disabled and
adaptive timestepping; (d ) transverse coordinates of drop centres corresponding to (c).

was shifted normal to itself by a small distance, typically of the order of 10−$a, so as
to slightly expand the polygon and thus prevent the touching of the polygonal
interfaces and the crossing of the interpolated interfaces as described by cubic splines.
Finally, all drops were tested for loss of area and isotropically expanded to the proper
level when the change in area was found to be larger than 1% the initial value. The
procedure was repeated in an iterative manner for all pairs of drops until intersection
was not found. An example, illustrating the performance of the method, is presented
in figure 17. The dotted lines show the initial interfaces of three overlapping circular
drops with the drop centres marked by squares ; the dashed lines show the disfigured
non-overlapping shapes, with the interface centroids marker by crosses ; and the solid
lines show the non-overlapping shapes described by cubic splines.

Results of a dynamical simulation for a suspension of three drops per cell for λ¯ 1
and Ca¯ 0±0833 are presented in figure 18. At the initial instant, the central drop is
nearly touching the two peripheral drops, as shown in figure 18(a). The simulation was
carried out twice ; the first time with the interface repositioning method enabled and a
fixed timestep of k,∆t¯ 0±02; and the second time with the interface repositioning
method disabled and with adaptive timestepping. The large variations of the size of the
timestep in the second case are illustrated in figure 18(b) ; the dotted horizontal line
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shows the constant timestep. Observing the time histories of the effective viscosity of
the suspension and y-position of the drop centres, shown in figure 18(c, d ), indicates
that a tolerated amount of error is introduced by enabling the interface repositioning
method even after a long period of time corresponding to ten inverse shear rates.
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